Curso Machine Learning on Google Cloud

GC-Partner-outline-V

En el聽curso Machine Learning on Google Cloud聽aprender谩s a:

  • Construir modelos Vertex AI AutoML sin escribir una sola l铆nea de c贸digo.
  • Crear modelos de BigQuery ML con conocimientos b谩sicos de SQL.
  • Crear e implementar trabajos de entrenamiento personalizados de Vertex AI utilizando contenedores (con poco conocimiento de Docker).
  • Utilizar Feature Store para la administraci贸n y el gobierno de datos.
  • Utilizar ingenier铆a de caracter铆sticas para mejorar el modelo.
  • Determinar las opciones de preprocesamiento de datos apropiadas para caso de uso.
  • Escribir modelos de ML distribuidos que escalen en TensorFlow.
  • Aprovechar las pr谩cticas recomendadas para implementar el聽machine learning en Google Cloud.

Pr贸ximos inicios

No disponibles en este momento.
Objetivos
  • Crear, entrenar e implementar un modelo de聽machine learning sin escribir una sola l铆nea de c贸digo usando Vertex AI AutoML.
  • Comprender cu谩ndo usar AutoML y Big Query ML.
  • Crear conjuntos de datos gestionados por Vertex AI.
  • Agregar funciones a una Feature Store.
  • Describir Analytics Hub, Dataplex y Data Catalog.
  • Describir el ajuste de hiperpar谩metros con Vertex Vizier y c贸mo se puede utilizar para mejorar el rendimiento del modelo.
  • Crear un cuaderno administrado por el usuario de Vertex AI Workbench, un trabajo de capacitaci贸n personalizado y luego implementarlo usando un contenedor Docker.
  • Describir predicciones por lotes y en l铆nea, y monitoreo de modelos.
  • Describir c贸mo mejorar la calidad de los datos.
  • Realizar an谩lisis de datos exploratorios.
  • Construir y entrenar modelos de aprendizaje supervisado.
  • Optimizar y evaluar modelos utilizando funciones de p茅rdida y m茅tricas de rendimiento.
  • Crear conjuntos de datos de prueba, evaluaci贸n y entrenamiento repetibles y escalables.
  • Implementar modelos ML usando TensorFlow/Keras.
  • Describir c贸mo representar y transformar caracter铆sticas.
  • Comprender los beneficios de utilizar la ingenier铆a de funciones.
  • Explicar Vertex AI Pipelines.
Audiencia

Este curso est谩 dirigido, principalmente, a los siguientes participantes:

  • Aspirantes a analistas de datos de machine learning, cient铆ficos de datos e ingenieros de datos.
  • Personas que deseen aprender sobre machine learning聽mediante Vertex AI AutoML, BQML, Feature Store, Workbench, Dataflow, Vizier para el ajuste de hiperpar谩metros, y TensorFlow/Keras.
Requisitos
  • Estar familiarizado con los conceptos b谩sicos de machine learning.
  • Tener un dominio b谩sico de un lenguaje de secuencias de comandos, preferiblemente Python.
Contenidos

Curso 1:聽How Google Does Machine Learning

What are best practices for implementing machine learning on Google Cloud? What is Vertex AI and how can you use the platform to quickly build, train, and deploy AutoML machine learning models without writing a single line of code? What is machine learning, and what kinds of problems can it solve?

Google thinks about machine learning slightly differently: it鈥檚 about providing a unified platform for managed datasets, a feature store, a way to build, train, and deploy machine learning models without writing a single line of code, providing the ability to label data, create Workbench notebooks using frameworks such as TensorFlow, SciKit Learn, Pytorch, R, and others. Our Vertex AI Platform also includes the ability to train custom models, build component pipelines, and perform both online and batch predictions. We also discuss the five phases of converting a candidate use case to be driven by machine learning, and consider why it is important to not skip the phases. We end with a recognition of the biases that machine learning can amplify and how to recognize them.

  • Describe the Vertex AI Platform and how it is used to quickly build, train, and deploy AutoML machine learning models without writing a single line of code.
  • Describe best practices for implementing machine learning on Google Cloud.
  • Develop a data strategy around machine learning.
  • Examine use cases that are then reimagined through an ML lens.
  • Leverage Google Cloud Platform tools and environment to do ML.
  • Learn from Google’s experience to avoid common pitfalls.
  • Carry out data science tasks in online collaborative notebooks.

Curso 2:聽Launching into Machine Learning

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

  • Describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code.
  • Describe Big Query ML and its benefits.
  • Describe how to improve data quality.
  • Perform exploratory data analysis.
  • Build and train supervised learning models.
  • Optimize and evaluate models using loss functions and performance metrics.
  • Mitigate common problems that arise in machine learning.
  • Create repeatable and scalable training, evaluation, and test datasets.

Curso 3:聽TensorFlow on Google Cloud

The modules cover designing and building a TensorFlow input data pipeline, building ML models with TensorFlow and Keras, improving the accuracy of ML models, writing ML models for scaled use, and writing specialized ML models.

  • Create TensorFlow and Keras machine learning models.
  • Describe TensorFlow key components.
  • Use the tf.data library to manipulate data and large datasets.
  • Build a ML model using tf.keras preprocessing layers.
  • Use the Keras Sequential and Functional APIs for simple and advanced model creation. Understand how model subclassing can be used for more customized models.
  • Use tf.keras.preprocessing utilities for working with image data, text data, and sequence data.
  • Train, deploy, and productionalize ML models at scale with Cloud AI Platform.

Curso 4:聽Feature Engineering

Want to know about Vertex AI Feature Store? Want to know how you can improve the accuracy of your ML models? What about how to find which data columns make the most useful features? Welcome to Feature Engineering, where we discuss good versus bad features and how you can preprocess and transform them for optimal use in your models. This course includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

  • Describe Vertex AI Feature Store.
  • Compare the key required aspects of a good feature.
  • Combine and create new feature combinations through feature crosses.
  • Perform feature engineering using BigQuery ML, Keras, and TensorFlow.
  • Understand how to preprocess and explore features with Dataflow and Dataprep by Trifacta.
  • Understand and apply how TensorFlow transforms features.

Curso 5:聽Machine Learning in the Enterprise

This course encompasses a real-world practical approach to the ML Workflow: a case study approach that presents an ML team faced with several ML business requirements and use cases. This team must understand the tools required for data management and governance and consider the best approach for data preprocessing: from providing an overview of Dataflow and Dataprep to using BigQuery for preprocessing tasks.

The team is presented with three options to build machine learning models for two specific use cases. This course explains why the team would use AutoML, BigQuery ML, or custom training to achieve their objectives.

A deeper dive into custom training is presented in this course. We describe custom training requirements from training code structure, storage, and loading large datasets to exporting a trained model.

You will build a custom training machine learning model, which allows you to build a container image with little knowledge of Docker.

The case study team examines hyperparameter tuning using Vertex Vizier and how it can be used to improve model performance. To understand more about model improvement, we dive into a bit of theory: we discuss regularization, dealing with sparsity, and many other essential concepts and principles. We end with an overview of prediction and model monitoring and how Vertex AI can be used to manage ML models.

  • Understand the tools required for data management and governance.
  • Describe the best approach for data preprocessing: from providing an overview of Dataflow and Dataprep to using SQL for preprocessing tasks.
  • Explain how AutoML, BigQuery ML, and custom training differ and when to use a particular framework.
  • Describe hyperparameter tuning using Vertex Vizier and how it can be used to improve model performance.
  • Explain prediction and model monitoring and how Vertex AI can be used to manage ML models.
  • Describe the benefits of Vertex AI Pipelines.
Material del curso

Documentaci贸n oficial para el curso Machine Learning on Google Cloud.

Perfil del docente
  • Formador certificado por Google Cloud.
  • M谩s de 5 a帽os de experiencia profesional.
  • M谩s de 4 a帽os de experiencia docente.
  • Profesional activo en empresas del sector IT.
Promociones

Antiguos alumnos

Si has asistido a alguno de nuestros cursos, tienes un 10% de descuento en la matr铆cula de tus pr贸ximos cursos o certificaciones oficiales.

Carn茅 Joven Comunidad de Madrid

Si tienes el Carn茅 Joven de la Comunidad de Madrid, dispones de un 15% de descuento en todos nuestros cursos y certificaciones. 脷nicamente deber谩s presentar tu carn茅.

Desempleados

Bonificamos un 10% la matr铆cula de tu curso o certificaci贸n oficial. 脷nicamente deber谩s acreditarlo con cualquiera de los documentos oficiales disponibles.

Discapacitados

Si tienes alg煤n tipo de discapacidad, cuentas con un 10% de descuento en la matr铆cula de tu curso. 脷nicamente deber谩s acreditarlo.

Familia numerosa

隆Te ayudamos! Sabemos que es importante cuidar de la econom铆a familiar, por eso, y en cumplimiento de nuestra pol铆tica de Responsabilidad Social Corporativa, si eres miembro de una familia numerosa, puedes beneficiarte de un 10% de descuento en la matr铆cula de cualquier curso. 脷nicamente deber谩s acreditarlo.

Amigos o compa帽eros profesionales

Si te inscribes a nuestros cursos con uno o m谩s amigos o compa帽eros t茅cnicos, cada uno de vosotros obtendr茅is un descuento del 10% en vuestra formaci贸n.

Si trabaj谩is en la misma empresa, consulta los descuentos para departamentos profesionales.

Empresas

Mantener, actualizar y perfeccionar las habilidades y conocimientos del equipo de trabajo es esencial para la adaptaci贸n y el 茅xito de la estrategia empresarial en el entorno din谩mico y desafiante en el que competimos.

Si deseas planificar la formaci贸n (t茅cnica, metodol贸gica o de habilidades) de tu equipo, consulta nuestros planes de formaci贸n continua o los descuentos en cursos y certificaciones t茅cnicas.

Medios de pago

Fundae (Formaci贸n bonificable)

Pr谩cticamente la totalidad de nuestra formaci贸n puede ser bonificada aplicando el cr茅dito de formaci贸n que las empresas y aut贸nomos tienen anualmente en Fundae.

Cons煤ltanos y no te preocupes, lo gestionamos por ti.

Sodexo (Pluxee)

Ahorra con tu cheque virtual.

Formaci贸n Pass de Pluxee (Sodexo) es un servicio que facilita el acceso y pago de formaci贸n y certificaci贸n oficial. Al estar exento del IRPF, ahorras al menos un 25% del importe total.

脷salo con nosotros.


Descuentos no aplicables a Red Hat ni Oracle. La formaci贸n de聽Red Hat no es bonificable en Fundae. Los ex谩menes de certificaci贸n no se pueden bonificar. Podr谩n bonificarse 煤nicamente si son indivisibles del curso que los prepara.

Solicita informaci贸n

Partner oficial de los principales fabricantes tecnol贸gicos

The Swirl Logo es una marca registrada del grupo PeopleCert庐. Utilizada bajo licencia de PeopleCert庐. Todos los derechos reservados.