En el curso ML Pipelines on Google Cloud aprender谩s sobre TensorFlow Extended (TFX), que es la plataforma de machine learning de producci贸n de Google basada en TensorFlow para la gesti贸n de pipelines y metadatos de ML. Los primeros m贸dulos analizan los componentes de pipeline, la orquestaci贸n de pipeline con TFX, c贸mo puede automatizarse el pipeline a trav茅s de CI/CD y c贸mo administrar los metadatos de ML. Luego, se analiza c贸mo automatizar y reutilizar pipelines de ML en m煤ltiples marcos de ML, como tensorflow, pytorch, scikit learn y xgboost. Tambi茅n, aprender谩s a usar Cloud Composer para orquestar tus pipelines de capacitaci贸n continua y MLflow para administrar el ciclo de vida completo del machine learning.
Curso ML Pipelines on Google Cloud
- GC-MLPGC
- Avanzado

Pr贸ximos inicios
No disponibles en este momento.
Objetivos
- Organizar el entrenamiento y la implementaci贸n de modelos con TFX y Cloud AI Platform.
- Operar modelos de聽machine learning implementados de manera efectiva y eficiente.
- Realizar una capacitaci贸n continua con varios marcos (Scikit Learn, XGBoost, PyTorch) y organizar聽pipelines con Cloud Composer y MLFlow.
- Integre los flujos de trabajo de machine learning con los flujos de trabajo de gesti贸n de datos ascendentes y descendentes para mantener la gesti贸n integral de linaje y metadatos.
Dirigido a
- Cient铆ficos de datos que busquen generar un impacto comercial mediante la conversi贸n r谩pida del prototipo de聽machine learning a la producci贸n.
- Ingenieros de software que busquen desarrollar habilidades de ingenier铆a de machine learning.
- Ingenieros de聽machine learning que deseen adoptar Google Cloud.
Requisitos
- Haber completado el聽curso Machine Learning on Google Cloud.
- Haber completado el curso聽MLOps (Machine Learning Operations) Fundamentals.
Contenidos
M贸dulo 1: Introduction to TFX
- Develop a high level understanding of TFX standard pipeline components.
- Learn how to use a TFX Interactive Context for prototype development of TFX pipelines.
- Work with the Tensorflow Data Validation (TFDV) library to check and analyze input data.
- Utilize the Tensorflow Transform (TFT) library for scalable data preprocessing and feature transformations.
- Use the KerasTuner library for model hyperparameter tuning.
- Employ the Tensorflow Model Analysis (TFMA) library for model evaluation.
M贸dulo 2: Pipeline orchestration with TFX
Use the TFX CLI and Kubeflow UI to build and deploy TFX pipelines to a hosted AI Platform Pipelines instance on Google Cloud.
- Deploy a TensorFlow model trained using AI Platform Training to AI Platform Prediction.
- Perform advanced distributed hyperparameter tuning using CloudTuner and Cloud AI Platform Vizier.
M贸dulo 3: Custom components and CI/CD for TFX pipelines
Develop a CI/CD workflow with Cloud Build to build and deploy a TFX Pipeline.
- Integrate Github trigger to trigger Cloud Build CI/CD workflow for a TFX pipeline.
M贸dulo 4: ML Metadata with TFX
Access and analyze pipeline artifacts in ML Metadata store.
M贸dulo 5:聽Continuous Training with multiple SDKs, KubeFlow & AI Platform聽Pipelines
Perform continuous training with Scikit-learn and AI Platform Pipelines
- Perform continuous training with PyTorch and AI Platform Pipelines
- Perform continuous training with XGBoost and AI Platform Pipelines
- Perform continuous training with TensorFlow and AI Platform Pipelines
M贸dulo 6:聽Continuous Training with Cloud Composer
Perform continuous training with Cloud Composer
M贸dulo 7:聽ML Pipelines with MLflow
Manage Machine Learning lifecycle with MLflow
M贸dulo 8:聽Summary
Summarize the course
Material del curso
Documentaci贸n oficial para el curso ML Pipelines on Google Cloud.
Perfil del docente
- Formador certificado por Google Cloud.
- M谩s de 5 a帽os de experiencia profesional.
- M谩s de 4 a帽os de experiencia docente.
- Profesional activo en empresas del sector IT.
Beneficios para tu formaci贸n
Haz click aqu铆 y descubre los descuentos, promociones y ayudas disponibles para tu formaci贸n tecnol贸gica.